Semiparametric efficient estimation in the generalized odds-rate class of regression models for right-censored time-to-event data.

نویسندگان

  • D O Scharfstein
  • A A Tsiatis
  • P B Gilbert
چکیده

The generalized odds-rate class of regression models for time to event data is indexed by a non-negative constant rho and assumes that [formula: see text] where g: rho(s) = log(rho-1(s-rho - 1)) for rho > 0, g0(s) = log(-logs), S(t[symbol: see text]Z) is the survival function of the time to event for an individual with q x 1 covariate vector Z, beta is a q x 1 vector of unknown regression parameters, and alpha(t) is some arbitrary increasing function of t. When rho = 0, this model is equivalent to the proportional hazards model and when rho = 1, this model reduces to the proportional odds model. In the presence of right censoring, we construct estimators for beta and exp(alpha(t)) and show that they are consistent and asymptotically normal. In addition, we show that the estimator for beta is semiparametric efficient in the sense that it attains the semiparametric variance bound.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Ridge Regression Estimator in Semiparametric Regression Models

In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...

متن کامل

Maximum likelihood estimation for semiparametric transformation models with interval-censored data

Interval censoring arises frequently in clinical, epidemiological, financial and sociological studies, where the event or failure of interest is known only to occur within an interval induced by periodic monitoring. We formulate the effects of potentially time-dependent covariates on the interval-censored failure time through a broad class of semiparametric transformation models that encompasse...

متن کامل

Locally Efficient Estimation in Censored Data Models: Theory and Examples

In many applications the observed data can be viewed as a censored high dimensional full data random variable X . By the curse of dimensionality it is typically not possible to construct estimators which are asymptotically efficient at every probability distribution in a semiparametric censored data model of such a high dimensional censored data structure. We provide a general method for constr...

متن کامل

Estimation in a class of semiparametric transformation models

We consider estimation in a class of one–sided semiparametric transformation models for right–censored data. These models gained much attention in survival analysis, however, most authors consider only regression models derived from frailty distributions whose hazards are decreasing. In this paper we consider estimation in a more flexible class of models and propose conditional rank M-estimator...

متن کامل

2 00 6 Estimation in a class of semiparametric transformation models ∗

We consider estimation in a class of semiparametric transformation models for right–censored data. These models gained much attention in survival analysis, however, most authors consider only regression models derived from frailty distributions whose hazards are decreasing. This paper considers estimation in a more flexible class of models and proposes conditional rank M-estimators for estimati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lifetime data analysis

دوره 4 4  شماره 

صفحات  -

تاریخ انتشار 1998